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As a rule, in the mechanics of systems with ideal constraints, the forms of the equations of motion are 
used in which the reactions of the constraints do not occur explicitly. This is a considerable advantage 
of the Lagrange equations of the second kind, Chaplygin’s equations, the Boltzmann-Hamel equations 
etc. However, if the system is subjected to unilateral constraints, some of which may disappear (decrease) 
or, conversely, appear (be imposed) during the motion of the system, then in practice the only method 
of establishing whether a constraint is imposed on the system is to constantly check the condition for 
the reaction of this constraint to be equal to zero. In other words, the values of the reactions of all 
unilateral constraints in systems of variable structure must be calculated during the motion. 

It is easy to obtain a formula for the reactions of ideal constraints when the equations of the reactions 
are independent (see, for example, [l]). This formula was also obtained in [2,3] for the case when there 
is an excessive number of constraint equations, when written in the form of second-order equations, 
they form a set that is linearly dependent on the generalized accelerations. The use of an excessive 
number of constraint equations will often be justified in order not to disturb the symmetry of these 
equations and the system of variables occurring in them [4-6]. 

Below, the formula derived by Kalaba et al. in [2, 31 is extended to the case when arbitrary linear 
quasi-velocities are used in systems with ideal constraints, and is obtained by a somewhat different 
method having a clearer mechanical meaning. 

1. A LINEAR SYSTEM 

Suppose A is an arbitrary real m x n matrix of rank r > 0. The following assertion is further required: 
the general solution of a consistent system of linear equations Rr = b(x E R”) can be represented in 
the form 

x=A+b+Gy, G=E-A+A (1.1) 

Here A+ is the pseudo-inverse n x m matrix [7], E is the identity matrix and y E R” is an arbitrary 
vector. 

There are several proofs of this formula [2,8,9]. 

We will present one more proof. The set of solutions of the inhomogeneous system is closed, and when b # 0 
the norm of these solutions is strictly positive. Consequently, a solution exists, that is minimum in norm, which, 
as is well known [7], has the form A+b. It remains to prove that rank G = n - r, i.e. the second term in (1.1) is the 
most general solution of the homogeneous system Ax = 0. By the property of the pseudo-inverse matrix 

AG=A-AA+A=A-A=0 

Hence, rank G S n - r. On the other hand, the matrixA+A is always symmetrical, and its rank is not greater than 
r, since the rank of the pseudo-inverse matrix is equal to the rank of the initial matrix. A non-singular matrix W 
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exists such that W-1GW is a diagonal matrix. But then there are not less than n -- r diagonal elements (ones) in 
this matrix. Consequently, rank G = n - r. 

Effective numerical methods exists for calculating the pseudo-inverse matrix. It can also be written 
in analytical form. Suppose A --- BC is a skeleton representation of the initial matrix [7]. Then 

A + = C'(CC')-~(B'B) -~ B" 

(the prime denotes transposition). 
One more formula is required for pseudo-inverse matrices 

D + = D'(DD') ÷ (1.2) 

To prove this we will consider the consistent system of linear equations Dx = b, when D is an arbitrary non-zero 
m x n matrix, andx ~ /~ .  The condition for this system tobe non-contradictory has the form (see (1.1)) 

DD+b = b (1.3) 

A particular solution of the system that is minimum in norm is xp = D+b. 
Consider another system DD'z = b, where D'z = x. Its solution, that is minimum in norm, is zp = (DlY)+b, whence, 

by virtue of the uniqueness of the particular solution of the initial linear system that is minimum in norm, its follows 
that 

( o  • - O ' ( O o ' ) ÷ ) b  = 0 ( 1 . 4 )  

But condition (1.3) is the only limitation on the vector b. andhence expression (1.2) follows from (1.4). 

2. A F O R M U L A  FOR THE R E A C T I O N S  

Suppose a mechanical system with a finite number of degrees of freedom is described by the vector of 
local generalized coordinates q ~ R n. Lagrange-ideal kinematic constraints 

ai(t,q, it)=O, i=1  . . . . .  m 

are imposed on the system, where t is the time and/~ is the n-vector of linear quasi-velocities, introduced 
using the non-singular n x n matrix P and the free vector h e R n 

i t=P(t ,q) i t+h( t ,q) ,  d e t P #  0 

Taking the total derivative with respect to time of the constraint equations, we obtain 

A(t, q, ~)it = b(t, q, 9) (2.1) 

We will write the equations of motion of the mechanical system in Euler-Lagrange form [10] with 
multipliers ~ ~ R '~ of the constraints (2.1) 

d 3T 0T n ¥~ 0 T x  k 0T = 
~ - ~  ~ ._.--:-- + ~ a j ~ - - - - = P j * ~  ~,iaij 

dt ~ j  ~nj k=l= r=l "1 ~ k  r k=l trek i=i 

j = l  . . . . .  n 

Here T is the kinetic energy of the system, Pj are the ~eneralized active forces applied to the system 
A = I la;jll, and formulae for the multi-index symbols ~. and t~ are derived in [10]. 

We can write these equations in matrix form as follows: 

M~ = F(t, q, io + A'X (2.2) 

where M is the positive definite symmetrical n x n matrix of the form T2 of the kinetic energy of the 
system, and all terms of the Euler-Lagrange equations which do not contain quasi-accelerations (apart 
from the covectorA'~, of the reaction of constraints (2.1)) are collected in the expression F. 
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Note that a = M q F  is the vector of the quasi-accelerations of the system, freed from constraints 
(2.1). 

In order to determine the reactions of the constraints, we will eliminate the vector of the quasi- 
accelerations ~ from formulae (2.1) and (2.2) and, introducing the notation, 

we obtain the matrix equation 

B = A M  -½, B'~.=x,  b - A a = c  

Bx = c (rankB = rankA = r) 

In the general case the matrix B is rectangular. 
According to expression (1.1), the general solution of this equation has the form 

x = B+c + ( E -  B+B)y, y ~ R" 

Consequently 

A'3.= F l + F 2, F l = M~B+ c, F 2 = M ~ ( E  - B+B)y 

The covectors F1 and F 2 on the right-hand side of the last formula are mutually orthogonal 

M-t  F~ • F t = y ' ( E -  B+B)M -I /2.  F 1 = y'(B + - B+BB+)c = y'(B + - B+)c = 0 

On the other hand, the vector M-1F2 belongs to the set of virtual displacements of the system 

ASq=0 

In fact 

A. M - l ~  = B ( E -  B+B)y = 0 

(2.3) 

But, by convention, the constraints (2.1) imposed on the system are ideal; consequently, y = 0 and we 
obtain from formula (2.3) the expression 

(2.4) A'~, = M ~ (  AM-1/2 )+ ( b -  Aa) 

for the reaction of these constraints. 
Formula (2.4) was derived somewhat differently in [2, 3] for mechanical systems specified in generaliz- 

ed coordinates. A general analogue of this formula for systems with Lagrange non-ideal constraints 
has also been published in [11]. 

Note that we can avoid having to calculate the matrix M ~'2 in expression (2.4). That is, using property 
(1.2) of the pseudo-inverse matrix for D = A M  -''~- we obtain 

and formula (2.4) takes the form 

(AM-~)+  = M - ~ A ' ( A M - ~ A , )  + 

(2.5) A'~, = A ' (AM-I  A')+ (b - Aa) 

which is more convenient for practical applications. 
When the matrixA has maximum rank, equal to min(m, n), expression (2.5) simplifies to 

(2.6) A 'k  = A ' (AM-IA ' ) - I (b  - Aa) 

3. EXAMPLE 

As an example which illustrates the explicit expressions obtained for the reaction of constraints, we 
will consider the problem of the motion of a heavy uniform sphere of radius R and mass m, supported 
by a pair of skew lines. 
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We will choose a fixed Cartesian system of coordinates Oxyz. Suppose OO' = a is the distance between 
the lines, and the point O lies on the first line of support. We will direct the Oy axis along the section 
OO', while the Oz axis is perpendicular to the plane containing the section OO' and the second line of 
support. Hence this axis makes an acute angle ct with the ascending vertical. We will denote by [3 the 
smallest of the two angles between the skew lines, and by (X, Y, Z) the coordinates of the centre C of 
the sphere. 

The conditions for the sphere to be in contact with both lines of support have the form 

[(Y- a) 2 +Z2] ~ -R=0, 

[y2 + (Xsin ~ - Zcos~)2] ~ - R = 0 
(3.1) 

We will consider three cases of the interaction between the sphere and the lines of support. 
In system $1 the sphere rolls without sliding. The conditions for the instantaneous velocities of the 

sphere at points of contact C1 and C2 to be  zero are expressed by the equations 

Vc+tOxpi=0 ,  Pi=CCi, i=1,2 (3.2) 

where Oc is the velocity of the centre of the sphere and tO(p, q, r) is the angular velocity. 
In system $2 the sphere rolls without sliding along the first line of support and slides without friction 

along the second line. The constraint equations are (3.1) and Eq. (3.2) with i = 1. 
Finally, in system $4 the sphere slides without friction along both lines of support. 
We will further derive some results of numerical calculations in graphical form, obtained for the 

following values of the parameters 

m= 1,R=2,  a = 3 ,  l]=Tt/6,~=rdl2 

The initial conditions were assumed to be the same in all versions of the calculations: X0 = 2.5 and 
too = -1.55. The sphere begins to move without sliding, resting on both lines and having an initial velocity 
of rotation tOo around the instantaneous axis C~C2 in the direction OO'. 

We will put 

~I=X,  ~ 2 = I  ~', ~3=J~, i~4= p, ~5=q,  ~ 6 = r  

System $1 (the holonomic system integrated in quadratures with one degree of freedom). There are 
eight constraint equations (3.1) and (3.2). Converting them to the form (2.1), we obtain, using formula 
(2.5), an explicit expression for the generalized reaction force - the right-hand side of the formula 

I ×RI +p2 ×R2 
(3.3) 

where R1 and R2 are the forces acting on the sphere from the first and second lines of support respectively. 
The sphere, acted upon by the force of gravity and the reactions, will rotate as long as the following 

two inequalities are satisfied 

91' Rl < 0, P2" R2 --- 0 (3.4) 

However, it is impossible to verify these conditions in system $1 since, the unknowns R1 and R2 can 
only be found from Eqs (3.3) to within the vector kC1C2, where k is an arbitrary scalar. Consequently, 
the settings of the kinematic constraints (3.2) are insufficient for the dynamic determinability of the 
system, and additional conditions are necessary. 

In Fig. 1 we show a curve of the values of the projection of the instantaneous angular velocity of the 
sphere on the direction CIC2 as a function of the coordinate X of the centre of the sphere. The curve 
was obtained by numerical integration of equations of motion (2.2) of system S1. 

The pointA on the curve corresponds to the initial position of the sphere. The sphere begins to move 
to the origin of eoordinatesX 0 = 0 and, being barely able to reach it, stops, and begins to roll backwards 
with an ever increasing angular velocity. In Fig. 1 the direction around the curve is denoted by the arrow. 
At the extreme right-hand point of this curve the distance CIC2 = 2R, and the sphere continues to roll 
along the skew lines of support but from below. After reaching the extreme left-hand point of the curve 
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in Fig. 1, at which the distance between the support points is equal to the diameter, the sphere "emerges" 
on top and, slowing down, begins to approach the origin of coordinates. At X = --0.89 the sphere stops, 
and then begins to roll in the opposite direction, until it reaches the initial position A. The motion of 
the sphere, in accordance with Eqs (2.2) and the formula obtained for the generalized reaction, is 
periodic. However, it is physically unreal, since constraints (3.1) and (3.2) are not bilateral. 

System $2 (the non-holonomic system with two degrees of freedom). There are five constraint 
equations (3.1) and (3.2) for i = 1. Formula (2.5) with the corresponding matricesA and b for system 
$2 gives an explicit expression for the generalized reaction (3.3). On the left-hand side of this formula 
R2 = ~t292. The sphere does not leave both support lines, so long as the following inequalities are satisfied 

Pl" RI < 0, ~t 2 _< 0 (3.5) 

The unknowns R1 and ~2 are found from Eqs (3.3). 
In Fig. 2 we show graphs of the values of the velocities of the points C 1 and C2 of the sphere. The 

modulus of the instantaneous velocity of the point C1 is equal to zero during the whole time of motion 
( [ vl ] = 0, the thickened section of the X axis), while the projection of the instantaneous velocity of 
the point C2 of the sphere onto the OX axis (the curve oz~ ) increases rapidly, when the sphere moves 
away from the extreme position X = 1.25. 

Figure 3 gives a representation of the reaction forces acting on the sphere. In the motion considered, 
the contact with the first support line disappears first (the graph reaches the axis 91 "R1 = 0). 

System $4 (the holonomic system integrable in quadratures with four degrees of freedom). The 
equations of its constraints (3.1) are independent, and the generalized reaction is calculated from formula 
(2.6). In this case both forces R1 = ktapl and R 2 = P'292 are found from Eqs (3.3), while the conditions 
for the sphere to remain in contact with both supports take the form B1 ~ 0, B2 ~ 0. 

Figure 4 shows graphs of the functions lal(X) and ~tz(X). The sphere also ceases to move from the 
first line of support, but for a value of X somewhat greater than in the similar situation in system $2. 

This research was supported by the Russian Foundation for Basic Research (02-01-00196, 00-15-96150) 
and the Federal Special Purpose "Integration" Programme. 
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